Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromolecules ; 54(2): 747-756, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33888918

RESUMO

In the present study, the photo-initiated copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization was utilized to form structurally diverse glassy polymer networks. Systematic alterations in the monomer backbone rigidity (e.g., cyclic or aliphatic groups with a different length of backbone) and the reactive functional group density (e.g., tetra-, tri-, di-, and mono-functional azide and alkyne monomers) were used to provide readily tailorable network structures with crosslink densities (estimated from the rubbery modulus) varying by a factor of over 20. All eight of the resultant networks exhibited glass transition temperatures (Tg) between 50 and 80 °C with tensile toughness ranging from 28 to 61 MJ m-3. A nearly linear dependence of yield stress and elongation at break (broadly defined as strength and ductility, respectively) on the Tg and rubbery modulus was established in these triazole networks. When a flexible di-alkyne monomer (5 carbon spacing between alkynes) was incorporated in a network composed of a tri-alkyne and di-azide monomer, the elongation at break was improved from 166 to 300 %, while the yield stress was reduced from 36 to 23 MPa. Additionally, the polymer ductility was also varied by incorporating mono-functional azides as chain ends in the network - replacing a sterically hindered stiff mono-azide with a more flexible mono-azide increased the elongation at break from 24 to 185 % and the tensile toughness from 6 to 28 MJ m-3.

2.
Soft Matter ; 14(37): 7645-7652, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30175341

RESUMO

Synthetic unilamellar liposomes, functionalized to enable novel characteristics and behavior, are of great utility to fields such as drug delivery and artificial cell membranes. However, the generation of these liposomes is frequently highly labor-intensive and time consuming whereas in situ liposome formation presents a potential solution to this problem. A novel method for in situ lipid formation is developed here through the covalent addition of a thiol-functionalized lysolipid to an acrylate-functionalized tail via the thiol-Michael addition reaction with potential for inclusion of additional functionality via the tail. Dilute, stoichiometric mixtures of a thiol lysolipid and an acrylate tail reacted in an aqueous media at ambient conditions for 48 hours reached nearly 90% conversion, forming the desired thioether-containing phospholipid product. These lipids assemble into a high density of liposomes with sizes ranging from 20 nm to several microns in diameter and include various structures ranging from spheres to tubular vesicles with structure and lamellarity dependent upon the catalyst concentration used. To demonstrate lipid functionalization, an acrylate tail possessing a terminal alkyne was coupled into the lipid structure. These functionalized liposomes enable photo-induced polymerization of the terminal alkyne upon irradiation.


Assuntos
Compostos de Sulfidrila/química , Lipossomas Unilamelares/química , Fosfolipídeos/química
3.
Dent Mater ; 34(4): 657-666, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29422327

RESUMO

OBJECTIVE: For the past several decades, the resins used in dental restorations have been plagued with numerous problems, including their implication in biofilm formation and secondary caries. The need for alternative resins is critical, and evaluation of biofilm formation on these resins is essential. The aim of this study was to evaluate in vitro biofilm formation on the surface of novel copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC)-based resins and composites. METHODS: CuAAC-based resins/composites made from varying azide monomers and different copper concentrations were compared with BisGMA-TEGDMA resins/composites that served as the control. Biofilms were formed using a mono-species model containing a luciferase-expressing strain of Streptococcus mutans. Luciferase activity was measured and the number of viable bacteria was enumerated on biofilms associated with each resin and composite. RESULTS: A significant reduction (p<0.05) in luciferase activity, and the number of viable bacteria recovered from biofilms on CuAAC-based resins and composites was observed in comparison to biofilms associated with the BisGMA-TEGDMA controls. SIGNIFICANCE: CuAAC-based resins do still allow for the formation of biofilms; however, the statistically significant reduction of growth that was associated with the CuAAC resin may enhance the longevity of restorations that incorporate CuAAC-based materials.


Assuntos
Alcinos/química , Azidas/química , Biofilmes/crescimento & desenvolvimento , Resinas Compostas/química , Cobre/química , Materiais Dentários/química , Teste de Materiais , Streptococcus mutans/crescimento & desenvolvimento , Propriedades de Superfície
4.
Adv Funct Mater ; 28(22)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31105506

RESUMO

Photopolymerization is a ubiquitous, indispensable technique widely applied in applications from coatings, inks, and adhesives to thermosetting restorative materials for medical implants, and the fabrication of complex macro-scale, microscale, and nanoscale 3D architectures via additive manufacturing. However, due to the brittleness inherent in the dominant acrylate-based photopolymerized networks, a significant need exists for higher performance resin/oligomer formulations to create tough, defect-free, mechanically ductile, thermally and chemically resistant, high modulus network polymers with rapid photocuring kinetics. This study presents densely cross-linked triazole-based glassy photopolymers capable of achieving preeminent toughness of ≈70 MJ m-3 and 200% strain at ambient temperature, comparable to conventional tough thermoplastics. Formed either via photoinitiated copper(I)-catalyzed cycloaddition of monomers containing azide and alkyne groups (CuAAC) or via photoinitiated thiol-ene reactions from monomers containing triazole rings, these triazole-containing thermosets completely recover their original dimensions and mechanical behavior after repeated deformations of 50% strain in the glassy state over multiple thermal recovery-strain cycles.

5.
Macromolecules ; 49(4): 1191-1200, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-27867223

RESUMO

Bulk photopolymerization of a library of synthesized multifunctional azides and alkynes was carried out toward developing structure-property relationships for CuAAC-based polymer networks. Multifunctional azides and alkynes were formulated with a copper catalyst and a photoinitiator, cured, and analyzed for their mechanical properties. Material properties such as the glass transition temperatures (Tg) show a strong dependence on monomer structure with Tg values ranging from 41 to 90 °C for the series of CuAAC monomers synthesized in this study. Compared to the triazoles, analogous thioether-based polymer networks exhibit a 45-49 °C lower Tg whereas analogous monomers composed of ethers in place of carbamates exhibit a 40 °C lower Tg. Here, the formation of the triazole moiety during the polymerization represents a critical component in dictating the material properties of the ultimate polymer network where material properties such as the rubbery modulus, cross-link density, and Tg all exhibit strong dependence on polymerization conversion, monomer composition, and structure postgelation.

6.
Dent Mater ; 32(11): 1332-1342, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27524230

RESUMO

OBJECTIVES: Polymerization shrinkage stress and factors involved in the stress development such as volumetric shrinkage and modulus were investigated in photo-CuAAC (photo-initiated copper(I)-catalyzed azide-alkyne cycloaddition) polymerization and compared with conventional BisGMA-based methacrylate polymerization for their use as alternative dental resins. METHODS: Tri-functional alkyne and di-functional azide monomers were synthesized for photo-CuAAC polymerization. Conversion kinetics, stress development and polymerization shrinkage were determined with FTIR spectroscopy, tensometery, and with a linometer, respectively, for CuAAC and BisGMA-based monomer mixtures using a camphorquinone/amine visible light photoinitiator system. Thermo-mechanical properties for the cured polymer matrices were characterized by dynamic mechanical analysis and in three-point bending on a universal testing machine. Polymerization kinetics, polymerization shrinkage stress, dynamic volumetric shrinkage, glass transition temperature (Tg), flexural modulus, flexural strength, and flexural toughness were compared between the two different resin systems. RESULTS: A glassy CuAAC polymer (Tg=62°C) exhibited 15-25% lower flexural modulus of 2.5±0.2GPa and flexural strength of 117±8MPa compared to BisGMA-based polymer (Tg=160°C) but showed considerably higher energy absorption around 7.1MJ×m-3 without fracture when strained to 11% via three-point bend compared to the flexural toughness of 2.7MJ×m-3 obtained from BisGMA-based polymer. In contrast to BisGMA-based polymers at 75% functional group conversion, the CuAAC polymerization developed approximately three times lower shrinkage stress with the potential to achieve quantitative conversion under ambient temperature photocuring conditions. Moreover, relatively equivalent dynamic volumetric shrinkage of around 6-7% was observed via both CuAAC and dimethacrylate polymerization, suggesting that the low shrinkage stress of CuAAC polymerization was due to delayed gelation along with slower rate of polymerization and the formation of a more compliant network structure. SIGNIFICANCE: CuAAC crosslinked networks possessed high toughness and low polymerization shrinkage stress with quantitative conversion, which eliminated obstacles associated with BisGMA-based dental resins including limited conversion, unreacted extractable moieties, brittle failure, and high shrinkage stress.


Assuntos
Resinas Compostas , Reação de Cicloadição , Alcinos , Azidas , Cobre , Módulo de Elasticidade , Teste de Materiais , Metacrilatos , Maleabilidade , Polimerização , Estresse Mecânico
7.
Polym Chem ; 7(3): 603-612, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-27429650

RESUMO

Photoinitiation of polymerizations based on the copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction enables spatio-temporal control and the formation of mechanically robust, highly glassy photopolymers. Here, we investigated several critical factors influencing photo-CuAAC polymerization kinetics via systematic variation of reaction conditions such as the physicochemical nature of the monomers; the copper salt and photoinitiator types and concentrations; light intensity; exposure time and solvent content. Real time Fourier transform infrared spectroscopy (FTIR) was used to monitor the polymerization kinetics in situ. Six different di-functional azide monomers and four different tri-functional alkyne monomers containing either aliphatic, aromatic, ether and/or carbamate substituents were synthesized and polymerized. Replacing carbamate structures with ether moieties in the monomers enabled an increase in conversion from 65% to 90% under similar irradiation conditions. The carbamate results in stiffer monomers and higher viscosity mixtures indicating that chain mobility and diffusion are key factors that determine the CuAAC network formation kinetics. Photoinitiation rates were manipulated by altering various aspects of the photo-reduction step; ultimately, a loading above 3 mol% per functional group for both the copper catalyst and the photoinitiator showed little or no rate dependence on concentration while a loading below 3 mol% exhibited 1st order rate dependence. Furthermore, a photoinitiating system consisting of camphorquinone resulted in 60% conversion in the dark after only 1 minute of 75 mW cm-2 light exposure at 400-500 nm, highlighting a unique characteristic of the CuAAC photopolymerization enabled by the combination of the copper(i)'s catalytic lifetime and the nature of the step-growth polymerization.

8.
Macromol Rapid Commun ; 33(9): 863-8, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22514123

RESUMO

Microwave-assisted surface-initiated radical polymerization (µW-SIP) is demonstrated for the rapid synthesis of polymer brush surfaces on two-dimensional substrates. µW-SIP is carried out at constant temperature and microwave power allowing comparison with conventional SIP carried out in an oil bath at the same effective solution temperature. We show µW-SIP enables significant enhancements (up to 39-fold increase) in brush thickness at reduced reaction times for a range of monomer types (i.e. acrylamides, acrylates, methacrylates, and styrene). The effects of reaction time, monomer concentration, and microwave power on film thickness are explored.


Assuntos
Micro-Ondas , Polímeros/síntese química , Acrilatos/química , Benzeno/química , Radicais Livres/química , Vidro/química , Polimerização , Silício/química , Solventes/química , Estirenos/química , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...